Differential rotational movement of the thoracolumbosacral spine in high-level dressage horses ridden in a straight line, in sitting trot and seated canter compared to in-hand trot

Research output: Contribution to journalJournal Articlepeer-review

2 Citations (Scopus)

Abstract

Assessing back dysfunction is a key part of the investigative process of “loss of athletic performance” in the horse and quantitative data may help veterinary decision making. Ranges of motion of differential translational and rotational movement between adjacent inertial measurement units attached to the skin over thoracic vertebrae 5, 13 and 18 (T5, T13, T18) lumbar vertebra 3 (L3) and tuber sacrale (TS) were measured in 10 dressage horses during trot in-hand and ridden in sitting trot/canter. Straight-line motion cycles were analysed using a general linear model (random factor: horse; fixed factor: exercise condition; Bonferroni post hoc correction: p < 0.05). At T5-T13 the differential heading was smaller in sitting trot (p ≤ 0.0001, 5.1◦ (0.2)) and canter (p ≤ 0.0001, 3.2◦ (0.2)) compared to trotting in-hand (7.4◦ (0.4)). Compared to trotting in-hand (3.4◦ (0.4)) at T18-L3 differential pitch was higher in sitting trot (p ≤ 0.0001, 7.5◦ (0.3)) and canter (p ≤ 0.0001, 6.3◦ (0.3)). At L3-TS, differential pitch was increased in canter (6.5◦ (0.5)) compared to trotting in-hand (p = 0.006, 4.9◦ (0.6)) and differential heading was higher in sitting trot (4◦ (0.2)) compared to canter (p = 0.02, 2.9◦ (0.3)). Compared to in-hand, reduced heading was measured in the cranial–thoracic area and increased in the caudal–thoracic and lumbar area. Pitch increased with ridden exercise from the caudal–thoracic to the sacral area.
Original languageEnglish
Pages (from-to)1-15
Number of pages15
JournalAnimals
Volume11
Issue number3
DOIs
Publication statusPublished - 20 Mar 2021
Externally publishedYes

Keywords

  • IMUs
  • Locomotion
  • Markers
  • Pitch
  • Roll and heading
  • Sensors
  • Skin

Fingerprint

Dive into the research topics of 'Differential rotational movement of the thoracolumbosacral spine in high-level dressage horses ridden in a straight line, in sitting trot and seated canter compared to in-hand trot'. Together they form a unique fingerprint.

Cite this