Investigating duration of nocturnal ingestive and sleep behaviors of horses bedded on straw versus shavings

Greening, L.M., Shenton, V., Wilcockson, K., and Swanson, J.

UWE Hartpury, Centre for Performance in Equestrian Sports, Hartpury College, Hartpury House, Gloucester, Gloucestershire, GL19 3BE, United Kingdom

Corresponding author linda.greening@hartpury.ac.uk tel:+44 (0)1452 702349 fax:+44 (0)1452 700629

Abstract

Horses are stabled overnight for a number of practical reasons however there is little research quantifying nocturnal equine behavioral patterns or the extent to which different environments influence nocturnal behavior. The aim of this study was to establish whether differences in duration of sleep and ingestive behaviors were apparent for horses bedded on straw (group one) or shavings (group two). Ten geldings of mixed breed (mean age 7.3±3.53 years) bedded on either shavings (N=5) or straw (N=5) were observed between 1900 and 0700 hours. Duration of behaviors according to a predefined ethogram were recorded in minutes using a video recorder and continuous focal sampling. Mann-Whitney U tests were used to identify whether any significant differences in duration of ingestion and sleep behaviors occurred for horses bedded on straw compared with shavings. Out of the total observation period, group one spent on average 29.3% of their time budget engaged in recumbent behaviors, compared with 12.2% for group two. However, no significant differences in duration were established between horses bedded on straw or shavings for standing sleep, sternal recumbency and lateral recumbency behaviors (P>0.05). Ingestive behaviors occupied approximately a third of the time budget with no significant difference (P>0.05) observed between groups. On average, group one spent a longer proportion of the observation period ingesting bedding (8.1%) compared with group two (1%). Duration of bedding ingestion appeared to peak between 0100 and 0700 for both groups. Although not quantified, general observations revealed horses were motivated to alternate between eating hay and bedding in both groups, due to the prevalence of bedding ingestion. The results indicate that straw bedding facilitates the display of ingestive and sleep behaviors, whilst horses bedded on shavings spent a greater proportion of their nocturnal time budget engaged in ‘other’ behaviors. Further research is required to investigate the extent to which different types of bedding material enrich the environment of horses that are stabled overnight.
Keywords: equine, nocturnal, recumbent, ingestion, behavior, bedding.

Introduction
The domestic environment within which the horse is kept and managed can present challenges to instinctive and innate behavioral patterns. Research indicates that within this environment, stabling and associated practices are often the most challenging aspects that the horse is expected to cope with (for example: McGreevy et al., 1995; Henderson & Waran, 2001; Piccione et al., 2008). Intense stabling practices, involving long periods of confinement with very little access to (free) exercise, have been associated with increased restlessness and aggression (Werhahn et al., 2011). Extended periods of confinement can also be associated with increased risk of abnormal behavior development (McGreevy et al., 1995). Barriers within traditional and conventional stabling systems therefore appear to reduce the opportunity for the horse to display normal behavior and increase the likelihood of abnormal behavior display (Cooper and Albertosa, 2005; Rose-Meirhofer et al., 2010). The role of the horse in modern society however seems to necessitate stabling (Henderson, 2007) and as a result research exists to investigate methods to enrich the stable environment using; feed-balls (Henderson and Waran, 1998), increased opportunities to forage (Thorne et al., 2005), and; increased visual horizons, such as mirrors (Cooper et al., 2000; Mills and Davenport, 2002). The use of bedding in the stable is a traditional practice that is receiving increased attention as a stimulus which is reported to exert variable positive and negative influences (Werhahn et al., 2010). However previous studies investigating bedding report contradictory evidence, maybe due to non-comparable sample populations or aspects of the study design. For example some studies employed female populations exclusively (Houpt et al., 2003; Werhahn et al., 2010), used relatively small stalls (Pedersen et al., 2004) and cross over designs employing different bedding materials (Werhahn et al., 2010). During preference tests, horses have been observed to choose straw bedding when given the choice (Mills et al., 2000), but have also demonstrated no significant preference (Hunter and Houpt, 1986). Some of the negative conclusions from bedding research suggest that bedding material has little significant influence on behavior (Thompson, 1995) and is linked with colic (Greet and Rossdale, 1987). More recently, research has shown that straw bedding encourages more bedding-directed behaviors, less standing behavior and longer duration recumbent behavior (Pedersen et al., 2004; Werhahn et al., 2010). The current study therefore aimed to establish whether significant differences existed for a sample population of mixed breed/age geldings, bedded on either straw or shavings, looking at the duration of nocturnal ingestive and sleep behaviors.

Methods and materials
Materials
Ten geldings of mixed breed and age (average 7.3±3.53 years; range 4-13 years) were allocated to either group one; wood shavings (N=5), or group two; straw (N=5) based on the bedding material that
appeared in their stable. Each horse had been bedded on the material for at least five months previously. Each stable measured 12 feet by 12 feet, the design of which prevented physical contact between neighboring horses due to solid walls separating each horse; they were able to see each other from the stable door. No deep litter systems or rubber matting were present in any of the stables. The bedding that appeared in the stable was either wheat straw or pine wood shavings that were not entirely new, and varied in depth according to owner preference (minimum 10 cm). Each horse was provided with access to pasture for between six and ten hours during the day and given its normal feed and/or individual ration of hay at 1830. All horses were individually stabled on the same yard and underwent light to medium work but were privately owned and therefore subject to different daily regimens.

Experimental design

Each horse was filmed once for a period of twelve hours between 1900 and 0700. The light was left on during the study and horses were habituated to this for a period of two nights prior to data collection. A Sony Handycam DCR-SX15E with a NP-FV100 battery was secured in the stable rafters in the top corner above the stable door and set on a wide-angle lens so that the entire stable was visible to facilitate data collection. Duration of ingestion and recumbent behaviors (table 1) were recorded using continuous focal sampling. Sleep was recorded where the behavior lasted for longer than one minute. Ethical approval was granted by Hartpury College.

Table 1: Ethogram of ingestive and sleeping/recumbent behaviors (Adapted from Dierindonck et al., 1996; Winskill et al., 1996; Flannigan & Stookey, 2002; Souris, 2007)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description of activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingest hay</td>
<td>Masticating, prehending or swallowing hay</td>
</tr>
<tr>
<td>Ingest concentrates</td>
<td>Masticating, prehending or swallowing concentrates</td>
</tr>
<tr>
<td>Ingest bedding substrate</td>
<td>Masticating, prehending or swallowing bedding substrate</td>
</tr>
<tr>
<td>Sleep whilst standing</td>
<td>Standing immobile, no or limited ear movement, relaxed tail, limited leg movement, eyes closed or half shut</td>
</tr>
<tr>
<td>Sternal recumbency</td>
<td>Recumbent, with sternum in contact with the ground, legs folded beneath the body, no or limited ear movement</td>
</tr>
<tr>
<td>Lateral recumbency</td>
<td>Recumbent, either lateral thoracic area parallel to and in contact with the ground, head immobile and in contact with the ground, legs extended</td>
</tr>
</tbody>
</table>

Statistical analysis

In order to establish whether differences in frequency or duration of ingestive and recumbent behaviors existed for horses bedded on straw or shavings, Mann Whitney-U tests were used...
(N₁=N₂=5). Significance levels were set at P<0.05. Total mean duration of individual behaviors was calculated from the sum of the total time spent engaging in that behavior by each horse, divided by the size of the sample population in each group. Mean duration data was also used to calculate the proportion of the total observation period (720 minutes) that each behavior was displayed for.

Results

Sleep behavior

No significant differences between group one or two were observed for median total duration sleep standing (Z=-0.104; P>0.05), sternal recumbency (Z=0.301; P>0.05) and lateral recumbency (Z=1.985; P>0.05) (table 2). During the total observation period, horses bedded on straw spent on average 29.3% of their time budget engaged in recumbent behaviors, compared with 12.2% for those bedded on shavings. Overall horses bedded on straw spent 56.9% engaged in sleep behaviors compared with 49.2% for horses bedded on shavings.

Table 2. Average duration (minutes) of sleep and sternal behaviors, also showing total duration as a proportion of the total observation period (%)

<table>
<thead>
<tr>
<th></th>
<th>Sleep standing</th>
<th>Sternal recumbency</th>
<th>Lateral recumbency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shavings</td>
<td>Straw</td>
<td>Shavings</td>
</tr>
<tr>
<td>Median duration (minutes)</td>
<td>263</td>
<td>273</td>
<td>113</td>
</tr>
<tr>
<td>Mean duration (minutes)</td>
<td>266</td>
<td>199</td>
<td>83.40</td>
</tr>
<tr>
<td>Proportion of total observation period (%)</td>
<td>36.9</td>
<td>27.6</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Ingestion behaviors

Only one horse bedded on shavings was observed not to display any type of bedding ingestion behavior. No significant differences were observed for median total duration of hay ingestion (Z=-0.940; P>0.05) or bedding ingestion (Z=1.776; P>0.05) (table 3). Out of the total observation period horses bedded on straw spent on average 36.2% of their time engaged in ingestion behaviors, compared with 33.1% displayed by horses bedded on shavings.

Table 3. Average duration (minutes) of ingestion behaviors, also showing total duration as a proportion of the total observation period (%)

<table>
<thead>
<tr>
<th></th>
<th>Ingestion of hay</th>
<th>Ingestion of bedding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shavings</td>
<td>Straw</td>
</tr>
<tr>
<td>Median duration (minutes)</td>
<td>248</td>
<td>228</td>
</tr>
<tr>
<td>Mean duration (minutes)</td>
<td>231.20</td>
<td>202</td>
</tr>
<tr>
<td>Proportion of total observation period (%)</td>
<td>32.1</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Although not statistically tested as part of the aims of the study, general observations recorded peak duration of hay ingestion occurring between 1900 and 2200, followed by a general decrease until the hours of 0400 and 0700. Around this time bedding ingestion was seen to increase. Additionally horses with hay nets were observed to have some hay left in the morning which may be explained in some cases by the prevalence of bedding ingestion.
Nocturnal time budget

Distinct differences were observed in nocturnal time budgets for lateral recumbency and ingesting bedding behaviors, when comparing the shavings (figure 1) and straw (figure 2) bedding groups. Overall the average proportion of time spent on other activities was greater for horses bedded on shavings (17.7%) compared with straw (7%). This equates to 127.44 minutes and 50.40 minutes respectively, where horses were not engaged in sleep, recumbent or ingestive behaviors.

Discussion

The results of the current study, although non-significant, reinforce previous research findings that straw bedding encourages increased bedding ingestion and recumbent behaviors, and reduced standing related behaviors (Pedersen et al., 2004; Werhahn et al., 2010). No standardization of bed size or condition was made, therefore representing ‘normal’ bedding conditions observed in the general population. Motivation to engage in bedding ingestion behaviors may have been influenced by bedding condition, where horses have been observed to display anti-parasite strategies when grazing at pasture (Fleurance et al., 2007). Further exploration of this theory in the stable may be useful to establish whether bedding condition influences nocturnal behavior.

On average the horses bedded on straw were observed to ingest their bed for longer than those bedded on shavings, although it is important to note that the latter still engaged in bedding ingestion behaviors to some extent. Research has shown that horses provided with multiple forage opportunities were observed to perform foraging behavior more frequently and for longer (Thorne et al., 2005). In the current study however there was very little difference in total average duration of ingestion behavior between shavings and straw beds, suggesting that whilst straw offers variation in palatability it does not significantly influence the amount of time that horses spend eating in the stable overnight. Although not quantified, general observations noted that horses moved between ingestion of hay to bedding ingestion, supporting the idea that some motivation exists to introduce variation into the diet. The ethogram used in the current study however incorporated prehension of bedding under the heading ‘bedding ingestion’ which may have included hay that was mixed in with the bed although the observer attempted to discern between the two.

Interestingly when the researcher asked the owners about each horse prior to the start of data collection whether their horse had colicked in the last five months, all owners replied no. Although straw ingestion has been linked with colic in the past (Greet and Rossdale, 1987) the anecdotal
reports from owners in the current study do not support this. Some horses engaged in bedding ingestion more than others, suggesting different individual motivation to do so. Increasing access to different types of forage within the stable has also been shown to decrease straw bed forage behavior (Thorne et al., 2005), which may offer a practical solution for owners of horses who have experienced colic associated with the use of a straw bed.

Straw beds have been reported to facilitate more sternal recumbency (Werhahn et al., 2010) and lateral recumbency (Pedersen et al., 2004). In the current study a straw bed appeared to encourage horses to spend a greater proportion of the observation period engaged in both lateral and sternal recumbency compared with horses bedded on shavings, suggesting that straw facilitates sleep, and more importantly paradoxical sleep, highlighting the potential for improved welfare. However it is recognized that the exact amount of exercise each horse undertook was not standardized which may have influenced the amount of rest that individual horses were motivated to undertake during the study (Caanitz et al, 1991). Similarly the study could afford to be conducted over a longer period of time to gain more data for each individual, and the size of the horse relative to the dimensions of the stable should also be considered in future as horses have been found to engage in more recumbent behavior in large boxes (Raabymagle & Ladewig, 2006).

Overall the average proportion of time spent on other activities was greater for horses bedded on shavings (17.7%) compared with straw (7%). Further research may help to verify the following suppositions; that this time may have been spent standing alert, moving, rolling, engaging in stereotypic behavior, or defecation. Generally it is accepted that environmental enrichment aims to improve the biological functioning of an animal by making adjustments to the artificial environment, although measuring the success of such improvements quantitatively has proven to be challenging (Newbury, 1995). Where it is possible to account for biologically relevant behaviors within time budgets, it could be suggested that a straw bed encourages the display of more beneficial or functional behaviors from horses compared with shavings, although further research would be required to account specifically for the type and prevalence of these.

Conclusion

No statistically significant differences were observed for time spent engaged in ingestion or sleep behaviors where horses were bedded on shavings compared with straw. The proportion of time not spent engaged in sleep or ingestion related behaviors was greater for horses bedded on shavings, suggesting straw enables more functional behavior to be displayed in the stable overnight. Although no episodes of colic were recorded during or prior to the study, owners are recommended to approach the requirements of individual horses with care. Future research should focus on quantifying the occurrence of other nocturnal behaviors, whilst a greater understanding of individual horse bedding preferences, including factors affecting motivation behind bedding directed and
recumbent behaviors, is still required.

Acknowledgements: Our thanks are extended to Fernando de Mata for proof-reading this article.

References

Cooper, J; McDonald, I; Mills, D,S. 2000. The effect of increasing visual horizons on stereotypic weaving: implications for the social housing of stabled horses. Appl. Anim. Behav. Sci. 69:1, 67-83

Dierendonck, M; Bandi, N; Batdorj, D; Dügerlham, S; Munkhtsog, B. 1996. Behavioral observations of reintroduced Takhi orPrzewalski horses (Equus ferus przewalski) in Mongolia. Appl. Anim. Behav. Sci. 50:2, 95-114

Rose-Meierhöfer, S; Klaer, S; Ammon, C; Brunsch, R; Hoffmann, G. 2010. Activity behavior of horses housed in different open barn systems. J. Eq. Vet. Sci. 30:11, 624-634

